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Experiments on free-surface turbulence
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We study the free surface of a turbulent flow, in particular the relation between
the statistical properties of the wrinkled surface and those of the velocity field
beneath it. Channel flow turbulence is generated using an active grid. Through a
judicial choice of the stirring protocol the anisotropy of the subsurface turbulence
can be controlled. The largest Taylor Reynolds number obtained is Reλ = 258. We
characterize the homogeneity and isotropy of the flow and discuss Taylor’s frozen
turbulence hypothesis, which applies to the subsurface turbulence but not to the
surface. The surface gradient field is measured using a novel laser-scanning device.
Simultaneously, the velocity field in planes just below the surface is measured using
particle image velocimetry (PIV). Several intuitively appealing relations between the
surface gradient field and functionals of the subsurface velocity field are tested. For an
irregular flow shed off a vertical cylinder, we find that surface indentations are strongly
correlated with both vortical and strain events in the velocity field. For fully developed
turbulence this correlation is dramatically reduced. This is because the large eddies
of the subsurface turbulent flow excite random capillary–gravity waves that travel
in all directions across the surface. Therefore, the turbulent surface has dynamics of
its own. Nonetheless, it does inherit both the integral scale, which determines the
predominant wavelength of the capillary–gravity surface waves, and the (an)isotropy
from the subsurface turbulence. The kinematical aspects of the surface–turbulence
connection are illustrated by a simple model in which the surface is described in
terms of waves originating from Gaussian wave sources that are randomly sprinkled
on the moving surface.

1. Introduction
Turbulent flows in seas and oceans, as well as flows in rivers and channels, are

bound by their free surface. Turbulence wrinkles the surface which, in turn, reacts to
the subsurface flow. Surface turbulence is important, as the small-scale roughness of
the ocean’s surface determines the exchange of heat and mass between the atmosphere
and the ocean. These transport processes are crucial for the global distribution of
momentum, heat and chemical species.

In this paper we will study the wrinkling of the surface in still air. The shape of
the surface depends on a delicate balance between vertical acceleration and pressure
in the flow below the surface on one hand and gravity and interfacial tension on
the other hand. Which force dominates this balance depends on the scale of the
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deformation. Generally, for large-scale surface deformations, gravity balances vertical
accelerations in the fluid, whereas for smaller scales surface tension plays a more
important role. The relative importance of each of these forces can be expressed in
terms of two non-dimensional numbers. The Froude number for turbulence with a
typical length scale L and velocity scale u is

Fr = u2/2gL,

where g is the gravitational acceleration. (Fr is the ratio of kinetic and potential
energy and customarily is Fr = u/(gL)1/2). This number is a measure of the potential
energy associated with gravity relative to the kinetic energy in the flow. The Weber
number, which is the ratio of the flow kinetic energy over the energy due to surface
tension, is

We = u2Lρ/2σ,

where σ is the surface tension coefficient. However, since turbulence does not have
a single length scale or time scale, one can expect to see many different features
occurring side by side. Brocchini & Peregrine (2001a) classified different types of
structures and the behaviour that can occur at a free surface above turbulent flow.
The most obvious free-surface deformations are capillary–gravity waves. These travel
across the surface and are identifyable by their dispersion relation. Other structures,
more closely linked to events in the turbulence, are scars – sharp lines on the surface,
most often associated with upwelling or downwelling of fluid. Additionally, low
pressure in the core of subsurface eddies can lead to dimples in the surface. This
brings us to the central questions in this paper: What does the shape of the free
surface reveal about the statistics of the subsurface turbulence? More specifically, if
we have clear Kolmogorov scaling of the subsurface turbulence fluctuations, will this
scaling also be visible in the surface shape above it? Does the (an)isotropy of the
subsurface turbulence determine the (an)isotropy of the surface shape? What part
of the turbulence, if any, is directly visible in the surface shape? The answers to
these questions are of prime importance for interpreting geophysical observations of
the surface shape, obtained by novel remote-sensing techniques (Forbes et al. 1993;
Stammer 1997).

In a geophysical setting, the large waves one sees at the water surface are driven by
the wind above it rather than by the subsurface turbulence. Phillips (1957) proposed
resonant initiation of these waves by pressure fluctuations moving with the turbulent
wind. Since the phase velocity of free-surface waves on water has the minimum of
approximately 0.23 m s−1, this resonance mechanism can only work if the turbulent
velocity fluctuations are larger than 0.23 m s−1. Obviously, this mechanism can also
apply to waves generated by turbulence below the surface.

Waves generated by wind have been extensively studied, both in experiments (see,
for instance, Zhang 1995) and in simulations (Borue, Orszag & Staroslesky 1995).
The latter paper also briefly describes surface waves excited by subsurface turbulence,
emerging from the bottom boundary layer in a channel flow in the absence of
wind. The resulting surface ripples follow the theoretical dispersion relation for
linear gravity–capillary waves reasonably well, except for small wavenumbers. More
recently, Teixeira & Belcher (2006) used rapid-distortion theory to calculate both
resonant and non-resonant wave growth due to turbulence in the wind above
the surface, as well as due to a turbulent subsurface shear flow. They find that
surbsurface turbulence produces steeper surface waves than (resonant) turbulent
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wind fluctuations; so in the initial stages of wave growth, subsurface turbulence is
more important than previously thought.

Most studies of the interactions between turbulence and a free surface specifically
look at how the presence of a free surface affects the turbulence, rather than at
how the turbulence affects the surface. The surface is usually represented by a flat
non-deformable stress-free wall, which corresponds to a free surface with very small
Froude and Weber numbers. In a study of how turbulence statistics change when an
initially homogeneous turbulent flow is convected past a wall moving with the mean
flow velocity, Hunt & Graham (1978) introduced the concept of a source layer. In this
layer, adjacent to the wall with a depth approximately equal to the integral length of
the turbulence, vertical fluctuations are reduced from their values in the bulk to zero
at the wall by a source-like velocity distribution. Horizontal fluctuations are adjusted
to the boundary condition at the wall in a much thinner viscous layer. Using rapid
distortion theory, Hunt & Graham (1978) showed that inside the source layer, while
the vertical velocity fluctuations decrease, tangential fluctuations as well as tangential
integral scales increase. This agreed with experiments in a windtunnel with a moving
wall (Thomas & Hancock 1977). Obviously, turbulence below a (flat) free surface is
not the same as turbulence moving past a wall moving at the same velocity, but the
overall picture remains the same (Hunt 1984; Teixeira & Belcher 2000; Magnaudet
2003). This has been observed in direct numerical simulations (DNS) of turbulence
beneath a free surface. Handler et al. (1993), Pan & Banerjee (1995), Nagaosa (1999)
and Nagaosa & Handler (2003) simulated a channel flow in which the turbulence
originates in the bottom boundary layer. This was also studied by means of large
eddy simulation by Calmet & Magnaudet (2003). Perot & Moin (1995) and Walker,
Leighton & Garza-Rios (1996) used DNS in an alternative configuration, in which
no-slip walls were numerically inserted in initially homogeneous turbulence. The
discussion of the turbulence–flow interactions of Brocchini & Peregrine (2001a) was
fundamental to providing the boundary conditions for splashing surfaces proposed in
Brocchini & Peregrine (2001b) and complete the analysis of Hong & Walker (2000).

Turbulence under a nearly flat stress-free surface was also studied in experiments;
for instance turbulence generated with a vertically oscillating grid (Brumley & Jirka
1987), decaying turbulence behind a towed grid (Loewen, Ahlborn & Filuk 1986)
and turbulence generated in the bottom boundary layer in channel flow (Rashidi &
Banerjee 1988; Kumar, Gupta & Banerjee 1998).

In order to study how vortical structures affect the shape of the surface, vortex rings
are most commonly used, both in experiments (Bernal & Kwon 1989; Song, Bernal &
Tryggvason 1992; Gharib & Weigand 1996; Weigand 1996) and numerical simulations
(Zhang, Shen & Yue 1999). As a vortex ring approaches a free surface, it tends to break
up into smaller vortex tubes that end at the surface (vortex connection). Weigand
(1996) combined shadowgraphy and particle image velocimetry (PIV) to show that
the locations of the maxima of the vertical component of vorticity, associated with
vortex tubes, coincide with the positions at which the surface elevation is the lowest.
Song et al. (1992), also using shadowgraphy to visualize the free surface shape, report
that the process of vortex connection is accompanied by the generation of short
waves. However, shadowgraphy only provides a qualitative image of the surface, and
obviously, a single structure is not representative of turbulence.

Quantitative measurements allow an assessment of the relative importance of
the different types of subsurface structures in determining the shape of the surface.
Such experiments were done by Dabiri (2003), combining through the use of PIV a
measurement of the velocity field in a plane below the surface, with a meaurement
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of the surface shape using a two-dimensional free-surface gradient detector
(Zhang & Cox 1994).

In another experiment on a shallow turbulent flow running down inclined planes,
Smolentsev & Miraghaie (2005) covered a large range of Froude and Weber numbers.
Contrary to our work, the surface structure was found to travel with the mean velocity,
and no direct evidence for capillary–gravity waves was found. Wave–turbulence
interaction in the x–z plane was studied in a thin (2 cm) liquid plane jet by Li et al.
(2005). Of the two turbulent velocity components u and w, the vertical one showed
the strongest correlation with the surface elevation.

Quantitative information on how developed turbulence affects the surface shape
so far was only obtained in direct numerical simulations. Tsai (1998) calculated a
correlation ≈0.5 between the surface elevation and the absolute value of the surface-
normal vorticity, while the correlation with the parallel vorticity just below the surface
was larger (≈0.7). DNS of turbulent shear flow in a channel with a free surface were
also performed by Shen et al. (1999) who compared a deformable surface (with
linearized boundary conditions) to a flat, non-deformable surface and concluded that
in the former case, pressure variations due to upwellings and downdraughts were less
pronounced than in the latter, since surface ripples tend to smooth local pressure
fluctuations.

In this paper we will quantify the relation between the subsurface turbulence and the
surface fluctuations in a well-defined turbulent flow. In our experiments moderately
strong turbulence is generated in a water channel, by means of an active grid. The key
motivation for chosing this kind of turbulence is that its properties such as homogen-
eity and isotropy are very well established. However, the turbulence is relatively weak
in terms of its surface deformations. With a typical turbulence length scale L = 0.1m
and turbulent velocity u = 2.3×10−2 m s−1, the Froude number is Fr =3×10−4, while
the Weber number is We = 0.4, which implies that the surface wrinkles are shallow
and rounded (Brocchini & Peregrine 2001a). In our experiments we have access to
the two-dimensional subsurface velocity field u(x, t) in planes just below the surface
and to the surface gradient field ∇h(x, t) measured along a line. Through long-time
averages, various correlations between these quantities can be measured.

1.1. Relating the surface shape to the subsurface turbulence

Let us briefly summarize several intuitively appealing relations between two-
dimensional slices of the subsurface velocity field in planes parallel to the surface
u(x, t) and the surface h(x, t) or its gradient field ∇h(x, t). The simplest relation that
can be tried in our experiments is between the magnitude of the vertical component
of the vorticity |ωz| and the surface height. In principle h can be obtained from the
measured ∇h by integration, but we shall comment on this procedure in § 3.

In some special cases the surface elevation associated with a particular vorticity
distribution can actually be calculated. For instance for a two-dimensional smoothed
Rankine vortex, with radius a, strength Ω and vorticity ωz(r) = 2Ω/(1+ r2/a2), in the
absence of surface tension the surface is dimpled as h(r) = − (2Ω2/a2)/(1 + r2/a2).
As an alternative we can also consider the decaying vortex with vorticity

ωz(r, t) =
A

νt2

(
1 − r2

4νt

)
exp

(
−r2

4νt

)
(1.1)

(Taylor 1960), where A is a measure of the strength of the vortex, and ν is the
kinematic viscosity of the fluid. The associated circulation is proportional to the
time derivative of that of a decaying line vortex. Provided that the vertical velocities
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associated with its decay are small, the surface shape above this vortex is Gaussian:

h(r, t) =
A2

4gνt3

(
1 − exp

(
− r2

2νt

))
. (1.2)

The Navier–Stokes equation for inviscid free surface flow is

∂u
∂t

+ (u · ∇)u = −g ∇h +
σ

ρ
∇(∇2h), (1.3)

where σ is the surface tension, which for a clean air–water interface at room
temperature is σ = 0.73 × 10−3 Nm−1 and where the expression for the capillary
force assumes small surface elevations. In our experiment we measure the right-hand
side of (1.3), which we denote as g ζ , whilst from the left-hand side we can measure
(u · ∇)u of velocity fields in planes just below the surface, which we denote as gξ . In the
stationary case (1.3) suggests a strong correlation between ζ = − ∇h + (σ/ρ g)∇(∇2h)
and ξ = (1/g)(u · ∇)u. In order to highlight the relation with vorticity, we may separate
the dimensionless two-dimensional acceleration field ξ into strain S and rotation Ω

parts,

ξ =
1

g
(u · ∇)u = ξ S − ξΩ = u · (S − Ω/2)/g, (1.4)

and compute the correlation of each of the two parts with the surface force field ζ

separately. If the surface mainly consists of dimples above subsurface vortex cores, we
expect that ζ would be most strongly correlated with ξΩ . On the other hand, if the
surface crispations consist of upwellings or downwellings above regions of subsurface
strain, the strongest correlation would be with ξ S .

Our paper is organized as follows: In § 2 we will describe the experimental set-up
and characterize the turbulence forced by the active grid. A judicious choice of the
forcing protocal allows us to tune the anisotropy of the turbulent flow in the bulk
of the channel. Since we have a relatively large mean flow, an interesting question is
whether Taylor’s frozen turbulence hypothesis applies. The correlation between the
surface and the subsurface velocity fields will be discussed in § 3. Several possible
connnections will first be tested for the irregular vortices shed by a surface-piercing
cylinder and subsequently be applied to grid-generated turbulence. The statistical
properties of the surface will be described in § 4. A simple kinematic model which
qualitatively explains the measured surface statistical properties will be discussed in § 5.

2. Experiment
In our experiments we explore the relation between subsurface velocity fluctuations

and the surface wrinkles in a well-defined turbulent flow. We shall first describe the
turbulent flow and the way it is generated with help of an active grid. Next we will
explain how the subsurface turbulent velocity field and the surface gradient field are
measured.

The experiments are done in a water channel, illustrated in figure 1, with a width
of 0.3 m, a water depth of approximately 0.31 m and a mean stream velocity of
0–0.3 m s−1, with a measurement section that is approximately 7 m long. Turbulence is
generated either with a static grid or with an active grid (illustrated). For measuring
the properties of the turbulence, a two-component laser doppler velocimetry (LDV)
is used (not illustrated). It enables the measurement of the vertical and streamwise
components of the velocity very close (approx. 1 mm) to the surface. The system is
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Figure 1. Set-up for combined PIV and surface measurements. The inset shows the active grid,
with the channel cross-section outlined with the dashed line. In the inset, the vanes of the grid
are shown in the parallel configuration; in the experiments we use a staggered arrangement,
which improves the isotropy of the generated turbulence. PSD, position sensing device.

mounted on a yoke which allows traversing the location of the measurement volume
both in the vertical and spanwise directions. The entire system can also be moved
along the channel, to enable measurements at different streamwise locations.

2.1. Active grid turbulence

A well-established method to generate approximately homogenous turbulence in a
laboratory setting, for instance in a wind tunnel or water channel, is to pass the
flow through a grid consisting of vertical and horizontal bars. At a distance of
approximately 40 times the mesh size behind the grid and outside of the boundary
layers the generated turbulence is a fair approximation of homogeneous and isotropic
turbulence, as was shown by, for instance, Comte-Bellot & Corrsin (1966). Within
the Kolmogorov framework of turbulence, for a given grid the relation between the
Taylor-based Reynolds number Reλ and the Reynolds number based on the mesh
size M and the main stream velocity U , ReM =UM/ν, is given by

Reλ = Cf

√
ReM, (2.1)

with a constant Cf which depends on the details of the forcing. We define Reλ in terms
of the transverse Taylor microscale λt and the turbulence velocity u: Reλ = uλt /ν. In
case of grid turbulence Cf depends primarily on the type and the solidity of the
grid. Poorte (1998) has compared numerous experiments in which turbulence was
generated with regular static grids, finding Cf to be approximately 0.5.

While the turbulence of a static grid is homogeneous and nearly isotropic, it is
not strong. A way to increase the turbulence intensity is by using the so-called active
grid, which was first used in a wind tunnel by Makita (1991) and later used by
Mydlarski & Warhaft (1990). Poorte & Biesheuvel (2002) used a similar grid in a
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water tunnel. An active grid consists of an array of axes with metal agitator wings
attached to them. Each axis is driven in a random fashion by an electric motor
according to a particular forcing protocol. Poorte & Biesheuvel (2002) compared
their own experiments with those by Makita (1991) and Mydlarski & Warhaft (1990)
who showed that the value of Cf for active grids is close to 2. Hence, for an active
grid, Reλ is roughly four times larger than for a similarly dimensioned static grid.
Poorte (1998) concluded that, in order to generate a fair approximation of isotropic
decaying turbulence by use of an active grid, one should use the so-called staggered
configuration in which neighbouring agitator wings on each axis of the grid are
perpendicular to each other. This was also used in our experiments.

The static grid used in our experiments consists of 6 × 6 mesh openings. The mesh
size M =5 cm, which gives a mesh Reynolds number ReM of up to 1.5 × 104 and
Reλ ≈ 70. The overall solidity is 0.34.

The active grid has mesh size M = 5 cm as well. The grid vanes are mounted in
staggered configuration on rods of 5 mm diameter and have a chord of 4.8 cm. A
schematic drawing is included in figure 1. The axes of the grid are driven by strong
water-cooled motors (Maxon Motors RE 40; 150 W, 48 V) in combination with a
1:4.3 reduction gear (Maxon Motors GP 42) that can switch the rotation speed of
an axis from −7 to +7 revolutions per second in only 10 ms. The velocity (but not
the position) of each axis is controlled. It is prescribed by a computer program which
enables one to impose several forcing protocols. The grid is shown in figure 1. The
grid was built as a self-contained unit that could be slotted into the channel from
above.

2.2. Forcing protocols

The properties of the generated turbulence depend on details of the protocol used to
drive the axes. The forcing protocols used here are based on those used by Poorte
(1998) and Poorte & Biesheuvel (2002): each axis has a random angular velocity that
is changed at random times. According to Poorte two dimensionless numbers are
sufficient to describe such forcing protocols for a given grid geometry. The first is the
dimensionless angular velocity Ω∗ based on a comparison of the wing’s tip velocity
and the mean stream. It is defined as

Ω∗ =
π Ω0 c

v0

=
Vtip

v0

,

in which c is the agitator wing chord; v0 is the mean stream velocity; Vtip is the
root mean square (r.m.s.) wing tip velocity; and Ω0 is the r.m.s. angular velocity. The
second dimensionless number is dimensionless time T ∗ defined as

T ∗ =
v0 T0

c
,

where T0 is the integral time-scale of the forcing protocol, which can be found from
the auto-correlation function C(τ ) of the angular velocity of a given rod. In order to
produce homogeneous and isotropic turbulence both dimensionless numbers should
be close to unity.

Since in some of the experiments different main stream velocities are used, different
protocols matched to the respective velocities are needed. In our experiments these
protocols are called (15opt), (20opt) and (25opt) and are aimed at main stream
velocities close to 15, 20 and 25 cm s−1, respectively. They have been designed such
that both Ω∗ and T ∗ are indeed close to unity. The turbulence generated with protocol
(25opt) will be compared to turbulence generated with the static grid, which will be
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name U u u
w

ε Ll λt Reλ η ( ∂h
∂x

)r.m.s. ( ∂h
∂y

)r.m.s.

(m s−1) (m s−1) (m2 s−3) (cm) (cm) (mm)

15opt 0.166 9.70 × 10−3 1.05 8.5 × 10−6 6.9 1.30 125 0.59 3.6 × 10−3 4.1 × 10−3

20opt 0.221 1.27 × 10−2 1.05 2.4 × 10−5 6.3 1.00 128 0.45 7.7 × 10−3 7.6 × 10−3

25opt 0.271 1.62 × 10−2 1.10 4.2 × 10−5 7.0 0.97 157 0.39 1.6 × 10−2 1.6 × 10−2

25ran 0.266 2.29 × 10−2 1.15 6.2 × 10−5 8.1 1.10 258 0.36 2.7 × 10−2 2.6 × 10−2

25stat 0.289 7.50 × 10−3 1.10 9.4 × 10−6 3.5 0.95 71 0.57 9.6 × 10−3 9.4 × 10−3

Table 1. Overview of turbulence properties measured on the centreline of the channel at 2 m
behind the grid and 10 cm below the surface. Ll is the longitudinal integral scale, λt the
transverse Taylor microscale and η the Kolmogorov scale. The Taylor-based Reynolds number
is Reλ = uλt /ν, with the kinematic viscosity of water ν = 10−6 m2 s−1. The last two columns
show r.m.s. values of the surface slope in streamwise (x) and spanwise (y) directions.

referred to as (25stat), as well as with another protocol for the active grid (25ran).
In the latter, each axis receives a different random angular velocity that is changed
at a fixed frequency. The maximum velocity is 14 rev s−1, which is much higher than
for any of the others, and the velocity is changed at a fixed frequency of 7 Hz. As we
will show later, the turbulence generated by the static grid and the opt protocol is
close to isotropic, while the ran protocol produces markedly anisotropic turbulence.
This will enable us to study the influence of the bulk turbulence anisotropy on the
turbulent free surface.

2.3. Properties of the turbulence

Most measurements are done at 2m from the grid (40 times the mesh size), where
the turbulence can be expected to be fully developed (Comte-Bellot & Corrsin
1966). The LDV measurements correspond to the most common way of measuring
turbulence properties: through a point measurement of one or multiple components
of the velocity as a function of time. Correlation functions and spectra can only be
measured in time, but by using the Taylor hypothesis, time can be transformed into
the streamwise spatial coordinate.

The turbulence properties measured for the different forcing protocols as well as
the static grid, denoted with 25stat, are listed in table 1. It is immediately clear from
this table that the streamwise fluctuation velocity u varies widely with the forcing.
The static grid leads to the lowest turbulence intensity, 2.6 %, while depending on the
protocol; for the active grid it varies from 5.6 % to 8.8 %. With comparable mean
velocity, the Taylor Reynolds number for the near-isotropic turbulence generated by
the active grid is Reλ =157, while for the static grid it is Reλ = 71. The spectra for these
two cases are shown in figure 2. These and other spectra were used to compute the
viscous dissipation ε, while the (transverse) Taylor length scale λt and the longitudinal
integral length scale Ll were calculated from the companion correlation functions.
The Taylor microscale can also be determined from the dissipation rate; the result
is within 10 % of the value in table 1. The dissipation rate can also be inferred
from a measurement of the decay of the turbulent kinetic energy with x. We found
u2 ∼ x−κ , with an exponent κ close to one, but its precise value depends on the
mode of operation of the grid. The dissipation rate deduced from the decay of the
kinetic energy was within 10 % of that measured from the spectrum. Because the grid
protocol has to be changed with a change of the mean velocity, the Reynolds numbers
for the active grid do not always show a large increase with increasing mean velocity.
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Figure 2. Longitudinal energy spectra for the static grid and the active grid with protocol
(25opt), measured 10 cm below the surface and 2m behind the grid. Full line 1: active grid
(25opt in table 1); full line 2: static grid with protocol 25stat in table 1; dashed line: fit of
E(k) =CKε2/3k−5/3, with CK = 0.55 (Pearson, Krogstad & van de Water 2002), which was also
used to determine ε.

Figure 3(a) shows profiles of the mean-stream velocity for both the active and
static grids, for the same setting of the water channel pump. As can be expected in
turbulent channel flow, these profiles show a region near the channel centre in which
the mean-stream velocity is practically constant, flanked by the boundary layers from
the channel walls. Due to the higher blockage of the active grid, the mean-stream
velocity is somewhat lower than in case of the static grid.

The variation of both u and w turbulent velocity components across the channel is
shown in figure 3(c–f ). Close to the surface the vertical turbulent velocity decreases,
while the horizontal velocity increases. Consequently, the turbulent (u, w) anisotropy
sharply increases near the surface. These observations are in full agreement with the
existence of a source layer: a layer below the surface, with a thickness of roughly
one integral length scale, in which energy is redistributed from vertical to horizontal
fluctuations. The bottom boundary layer cannot be seen in these measurements, since
it lies outside of the vertical range over which the measurement volume can be
traversed.

Overall, these measurements show that at 2 m behind the grid, in a region of
approximately 10 cm width near the centre of the channel and up to 6 cm below the
surface, the turbulence generated by both the active and static grids is approximately
homogeneous in both the spanwise and vertical directions. Due to the presence of the
surface and the associated source layer, the turbulence is no longer homogenous as we
move closer to the surface, and it obviously is not homogeneous inside the boundary
layers formed on the channel walls. Since the turbulence decays, the turbulence
is obviously not homogeneous in the streamwise direction. However, since at 2 m
we are relatively far removed from the grid the turbulence decays relatively slowly.
Consequently, over a relatively small volume at 2 m from the grid, far below the surface
and near the channel centreline, the turbulence can be considered approximately
homogeneous.
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Figure 3. Velocity profiles the turbulence in the channel. Open circles: turbulence generated
with the active grid (25opt in table 1); closed dots: static grid (25stat in table 1). (a) Spanwise
profiles of the mean-stream velocity U . (b) Depth profiles of U . Spanwise profiles of (c)
streamwise turbulent velocity u and (d) vertical turbulent velocity w measured at 0.1 m below
the surface at 2m downstream from the grid. Vertical profiles of (e) streamwise turbulent
velocity u and (f) spanwise fluctuation velocity w measured at the centreline of the channel
(y = 0) at 2m downstream from the grid.

A point of concern is the direct excitation of the waves by the active grid. These
were suppressed by capping the surface directly above the grid (see figure 1). At the
measurement location most of these waves will have damped out. Moreover, in § 4 it
is shown that the wrinkled surface is isotropic. A consequence of this cap is that in
figure 3(b) the surface mean velocity is slightly smaller than its bulk value.

2.4. PIV and surface gradient measurements

The u, v components of the subsurface velocity field in planes below the surface are
measured with PIV. A dual pulsed Nd:YAG laser (Spectron Lasers SL454; 200 mJ
per pulse, 15 pulse pairs per second) is used as the light source for producing a
1mm thick horizontal light sheet below the surface. A digital camera (Kodak ES 1.0;
8 bit, 1018 × 1008 pixels) is mounted below the water channel pointing upwards. It
images an area of approximately 5.5 × 5.5 cm2 of the light sheet. For both the LDV
measurements and the PIV, the flow is seeded with 100µm glass seeding particles
(Dantec).

The measured velocity field is a spatial average over the used 32 × 32 pixel
interrogation window, which corresponds to an area of 2 × 2 mm2 in the actual
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flow. We use a 50 % overlap between adjacent interrogation windows. With these
choices we found that the relative amount of spurious velocity vectors lies below 1 %.
Additionally, the velocity field is filtered using a Gaussian kernel exp(−r2/σ 2

G) with
Gaussian width σG = 7 mm, which corresponds to σG ≈ 15 η at the largest Reynolds
number. This filter influences the correlations discussed in § 3; they are optimal with
the chosen σG.

The surface gradient field is measured in space and time by means of a newly
developed laser scanning technique. A harmonically swivelling laser beam is focused
on the surface, and its angle of refraction is measured using a position sensing device.
Details of this device can be found in Savelsberg, Holten & van de Water (2006).
Thus, a measurement of both components of the surface gradient field ∇h can be
obtained along a line. By rotating the entire scanning device, this line can be oriented
in either the streamwise or the spanwise direction. The scanning frequency is kept
at 2 kHz, so that the lines provide an instantaneous view of the gradient field along
the line. The scanning device produces a highly linear view of the gradient field in
152 points on the line. Currently, its spatial resolution is limited by the finite time
response (a few µs) of the position-sensitive device. Calibration of the measurement of
∇h only needs the length of the averge line and the distance of the detector above the
surface; all other information can be obtained from the data (Savelsberg et al. 2006).

The entire optical system is aligned such that the surface scan line lies close to the
centre of the PIV image. This is done with help of a calibration grid that defines
both coordinates in the PIV plane and the location of the surface-scanning laser line.
Not only should the data be located on the same spatial coordinates, but it should
also be obtained at the same time. A given PIV snapshot needs to be matched to the
correct part of the surface scan data and vice versa. Synchronization is achieved by
means of a purpose-built electronic timing unit. This timing unit also forms the clock
of the PIV system: a pair of PIV images is taken once after every 131st scan line. In
this way a strict temporal synchronization of both surface and subsurface turbulence
measurement systems remains guaranteed.

If the surface is scanned along lines at times ti , i =1, . . . , perpendicular to the mean
stream velocity, it is tempting to employ Taylor’s frozen turbulence hypothesis and
tile these lines to (xi, y) surfaces. The reconstruction is done such that xi =U (ti − tk),
where tk, k = 1, . . . , are the subsequent times of the PIV snapshots, and the line
samples at ti are chosen such that −L/2 � xi � L/2. Therefore, only the central
line xi = 0 of each reconstructed surface coincides exactly with the time at which
the corresponding PIV snapshot of the velocity field is taken. We will discuss this
procedure and its caveats in depth in § 2.7, and again in § 4, but end this section with
a series of planar snapshots of a turbulent surface in figure 4.

We can clearly distinguish localized surface bumps and dimples, together with line-
like scars and ridges. Due to the used-tiling procedure, the observed convection in the
x direction (vertical in the snapshots) is only meaningful if Taylor’s frozen turbulence
hypothesis applies to the surface. The surface scanning technique is very accurate: the
r.m.s. height variation in figure 4 is a mere 〈h2〉1/2 = 0.1mm. However, a notable ad-
vantage is that the scanning probe provides direct access to the surface ‘gradient’ field.

2.5. Isotropy of the subsurface turbulence

For grid-generated turbulence, outside of the boundary layers, isotropy in planes
perpendicular to the mean-stream direction is practically assured. However,
measurements in other planes often show anisotropy. The simplest measure of isotropy
is the ratio of fluctuation velocity components, in case of our LDV measurements,



106 R. Savelsberg and W. van de Water

–0.02 0 0.02 –0.02 0 0.02

–0.02

–0.01

0

0.01

0.02

–0.02

–0.01

0

0.01

0.02

–0.02

–0.01

0

0.01

0.02

0

0.01

0.02

Figure 4. Surface gradient field scanned in the spanwise (y) direction, with lines tiled into
surfaces, x =Ut , with the mean stream velocity U = 0.25m s−1. The time separation of the
frames is 0.128 s, which is twice the temporal separation of the corresponding subsurface PIV
images; the time increases from the upper left to the lower right frame.

the ratio of u over w. Its value, for the various protocols, is listed in table 1. For
static grids a difference between the streamwise and vertical r.m.s. velocities of up
to 10 % is fairly common (Comte-Bellot & Corrsin 1966), and indeed for our static
grid we find a 10 % difference. The difference for the active grid ranges from 5 %
to 15 %. Interestingly, in general an increase of turbulence intensity is accompanied
by an increase in the difference between u and w, which was already noted for the
comparison of various static grids by Comte-Bellot & Corrsin (1966).

A comparison of the turbulent velocities only reveals anisotropy existing at large
scales. Scale-dependent anisotropy information can be obtained through analysis of
correlation functions of the velocity field. These were measured with PIV in horizontal
planes 10 cm beneath the surface. The normalized spatial correlation function for a
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Figure 5. Longitudinal Cββ (reβ ) (L) and transverse Cαα(reβ ) (T ) correlation functions of the
velocity field measured 10 cm below the free surface. (a) Near-isotropic turbulence stirred by
the passive grid (25stat in table 1); full lines: β = x; dashed lines β = y. (b) Full line: transverse
Cxx(rey) from (a); dashed line: CT computed from the longitudinal Cyy(rey) from (a) using
the isotropy relation (2.3). (c) Near-isotropic turbulence stirred by the active grid (25opt in
table 1); full lines: β = x; dashed lines β = y. (d) Full line: Cxx(rey) from (c); dashed line: CT

computed from Cyy(rey) from (c), using the isotropy relation (2.3). (e) Anisotropic turbulence
(25ran in table 1); full lines: β = x; dashed lines β = y. (f) Full line: Cxx(rey) from (e); dashed

line: CT computed from Cyy(rey) from (e) using the isotropy relation (2.3).

homogeneous field is taken as

Cαα(reβ) =
〈uα(x + reβ)uα(x)〉 − 〈uα〉2〈

(uα(x) − 〈uα(x)〉)2
〉 , (2.2)

where the velocities are all measured at the same time. From the possible combinations
of the measured velocity component uα and the direction eβ , the ‘longitudinal’
correlations CL(r) are Cxx(rex) and Cyy(rey), while the ‘transverse’ correlations CT (r)
are Cxx(rey) and Cyy(rex). Isotropy and incompressibility of a three-dimensional
velocity field implies that

CT (r) = CL(r) +
r

2

d

dr
CL(r). (2.3)

By comparing the transverse correlation function that is computed from a measured
longitudinal one using (2.3) to an actually measured transverse correlation function,
the isotropy of our grid-generated turbulence is tested.

Figure 5 shows results for different types of forcing. Clearly, the turbulence
generated with the 25ran protocol is already anisotropic for small scales, while
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Figure 6. The presence of the surface is felt in the anisotropy ratio Rz(r) (2.4) which is
computed from planar cuts of the velocity field at increasing depth z below the surface. (a)
Rz(r) at z = 0 (full line) and z = 0.018m (dashed line). (b) Depth dependence of Rz(r) at
r = 0.03m ( =73 η).

the flow generated by both the opt and stat protocols is close to isotropic. We
conclude that a judicious choice of the stirring protocol can produce anisotropic
turbulence in our experiments. This will be used later on when we shall relate the
isotropy of the surface crispations to that of the subsurface turbulence.

2.6. Depth dependence of isotropy

In contrast to the three-dimensional velocity field in the bulk, the two-dimensional
surface velocity field (ux, uy) is compressible. The interesting consequences for the
dispersion of surface contaminants has been explored recently in experiments and
numerical simulations by Cressman et al. (2004). In their simulations the free surface
was assumed flat, while their experiments tried to avoid surface ripples as much as
possible. It was found that the normalized planar divergence of the velocity field

C =
〈
(∂xux + ∂yuy)

2
〉
/
(〈

(∂xux)
2
〉

+
〈
(∂xuy)

2
〉

+
〈
(∂yux)

2
〉

+
〈
(∂yuy)

2
〉)

,

whose isotropic value is 1/6, tends to C ≈ 0.5 at the surface. However, it is unclear why
this would be so. In our experiments we measure the u, v components of the velocity
field in planes at various depths below the (average) free surface. Because the size
of the interrogation window in our PIV procedure is several times the Kolmogorov
length scale η, we cannot measure the divergence of the velocity field. However, an
interesting ‘inertial-range’ quantity is the ratio

Rz(r) =

(
SL

2 (r) +
r

2

dSL
2

dr

)
/ST

2 (r), (2.4)

where SL
2 is the second-order structure function of the velocity. This quantity is 1 only

if there is isotropy, not only in the (x, y) plane but also in the vertical (z)direction,
although the corresponding w velocity component does not play a role in (2.4).

In figure 6(a) we plot the ratio Rz(r) at different depths, and in figure 6(b) we show
the depth dependence of Rz(r) at r/η =73, which is within the inertial range. At the
surface Rz(r) tends to 1.5 and shows little variation with r . It is remarkable that the
proximity of the surface is felt by an isotropy function of the planar velocity field.
The decay depth of Rz(r) can be compared to the thickness of the anisotropy layer
in figure 3(b, e).

2.7. The validity of Taylor’s hypothesis

In our experiment the information about the surface gradient field comes in the
form of lines, which are measured virtually instantaneously. Assuming that the entire
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Figure 7. (a) Space–time correlation function C(r, τ ) of the subsurface velocity field (at the
depth z = 0) and fixed τ = τ0 = 0.0642 s. (b) Full line: correlation function of the subsurface
velocity field C(x, y = 0; τ0); dashed line C(x + Uτ0, y = 0; 0).

surface is frozen and advected with the mean velocity, we tile these lines into planar
snapshots in figure 4. This assumption is equivalent to Taylor’s frozen turbulence
hypothesis.

Let us illustrate Taylor’s hypothesis for the subsurface ‘velocity field’ by correlating
at a time interval two subsequent PIV snapshots of u(x, t), taken of τ0 = 0.0642 s
apart. In figure 7 we show the normalized spatial correlation function of the velocity
field,

C(r, τ ) =
〈u(x + r, t + τ ) · u(x, t)〉

〈u2(x + r, t + τ )〉1/2〈u2(x, t)〉1/2
,

and compare it to the instantaneous spatial correlation function C(r, τ =0). Taylor’s
hypothesis implies that C(r + Uτ ex, 0) = C(r, τ ). Although C(r, τ0) has its maximum
at x =Uτ0, it is smaller than 1. This discrepancy is due to the fluctuations of the
advection velocity and the acceleration terms on the right-hand side of the Navier–
Stokes equation (Gledzer 1997) and is mainly caused by the short time scales.

In figure 4, where we display surface ‘snapshots’ of the gradient field, we employ
Taylor’s hypothesis, assuming that the frozen surface is advected by the mean velocity
U . As was argued in Savelsberg et al. (2006) and as will be again demonstrated in
§ 4, this is not correct. It will appear that the surface texture is only advected ‘in the
mean’ with U . Structures travel on the surface in all directions with the phase velocity
of capillary–gravity waves. Therefore, a more cautious interpretation of figure 4 is as
space–time plots. However, we believe that the identification of surface features in
figure 4 such as scars and ridges still applies.

3. Correlation of the surface gradient field with the subsurface velocity field
In figure 4 we have shown surfaces reconstructed from line scans of the

surface gradient field using Taylor’s frozen turbulence hypothesis. In this way
the reconstructed planar field ∇h(x, t) coincides in time and space with the
snapshots of the subsurface velocity field on (x, y) = [−L/2, L/2; − L/2, L/2].
This reconstruction enables us to compute the planar (x, y) correlation between these
two fields.

However, in § 2.7, we found that Taylor’s hypothesis works poorly for the moving
surface. Strictly speaking, therefore, we may only correlate the velocity field at times
t0 on the line [x = 0; y ∈ −L/2, L/2] with the line scan of ∇h(x, t) that was taken
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exactly simultaneously with the PIV image. Since we can now only use the velocity
field on a line for computing the correlation function, its statistical accuracy will be
degraded.

In fact, the computation of planar correlation functions by using reconstructed
surface measurements amounts to a filtering action. That is we emphasize those
surface structures that travel with the mean flow velocity U which was used in the
Taylor reconstruction of the surface. Conversely, we may view the reconstruction
procedure in the time domain and translate the x-coordinate of the measured velocity
field into time, using Taylor’s hypothesis for the velocity field. However, using Taylor’s
hypothesis in this manner also amounts to filtering structures in the correlation
function that travel with the mean velocity. That Taylor’s hypothesis works well for
the velocity field and poorly for the surface gradient field is not relevant in this
respect: in both views we filter structures in the planar correlation functions. To
study the effect of filtering, we will compute correlations on both a line y and the
reconstructed x, y plane.

As explained in § 1.1, the simplest correlation would be between the surface elevation
h and the magnitude |ωz| of the vertical component of the vorticity. A problem is that
in our experiment we measure the surface gradient field ∇h and not the elevation h.
Therefore, h must be obtained from ∇h by integration. For this integration, a reference
point x0 at which the surface height is zero must be chosen. In our experiments we
compute h from ∇h by averaging over all possible reference points,

h(x, t) =

〈∫ x

x0

∇h(x ′, t) dx′
〉

x0

,

and set the spatial average of the instantaneous height to zero, 〈h(x, t)〉x = 0.
In our experiment we are interested in ‘fluctuations’ of the elevation. Because the

size L of the surface is finite and because the correlation length is comparable to
L, we will miss the fluctuations on scales comparable to L. The consequence is that
the elevation fluctuations of such a surface obtained by integration of its gradient
depend on the position x. For a one-dimensional surface h(x, t) that is obtained by
integration of hx(x, t) such that 〈h(x, t)〉t =0, it can be readily derived that〈

h2(x, t)
〉

t
= 〈h̃2〉 − 2

L

∫ L−x

−x

Ch̃,h̃(x
′) dx ′ +

2

L2

∫ L

0

(L − x ′)Ch̃,h̃(x
′) dx ′,

where 〈h̃2〉 is the variance of the true surface height h̃ and Ch̃,h̃ = 〈h̃(x ′ +x, t) h̃(x, t)〉x ′,t

is its correlation function. As expected, if the surface is delta-correlated or if the surface
size L is infinitely large, the surface elevation variance is independent of x and equal
to the true surface variance. The consequence of the ambiguity of the surface reference
height is that all measured correlations involving the surface elevation show a spurious
x dependence.

The correlation between the surface elevation and the absolute value of the vorticity
component, |ωz|, is defined as

C|ωz|,h(r) =
〈|ωz(r ′ + r, t)| h(r, t)〉r ′,t〈
ω2

z (r, t)
〉1/2 〈h2(r, t)〉1/2

,

where we make sure that the fields |ωz| and h have zero mean by appropriate shifts,
for example replacing |ωz| by |ωz|−〈|ωz|〉t . The correlation function on lines, Cl

|ωz|,h(y),

which does not use Taylor’s hypothesis, is defined analogously. For vector fields α, β
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Figure 8. Relation between the velocity field and the free surface deformations of the turbulent
flow behind a cylinder. The mean flow velocity is 0.16m s−1; the cylinder diameter is 1.2 cm
(Re = 1.9 × 103). (a) The normalized convective acceleration ξ = − (u · ∇)u/g computed from
velocity fluctuations u that were measured in a plane 1 mm below the surface. (b) measured
surface gradient field ∇h. Two large vortices can be seen, where the fields ξ and ∇h are
strikingly similar; elsewhere, they are different. Clearly, the field ξ picks out the large-scale
depressions of the surface.

the equal-time correlation function is similarly defined:

Cα,β(r) =
〈α(r + r ′, t) · β(r ′, t)〉

〈α · α〉1/2 〈β · β〉1/2
,

where it is has again been made sure that the fields α, β have zero mean.
For measurement of the correlation function, a few technicalities should be

considered. As the surface gradient field ∇h is traced by the harmonically scanning
laser beam, it is resampled such that both the (resampled) velocity field u(x, t) and
the resampled gradient field occur on the same discrete grid (xi, yi), i =1, . . . , and
correlations between the two fields can be computed in practice. We estimate that
the spatial resolution of the measured ∇h field is approximately 3 η at the hightest
Reynolds number. The derivative fields ∇2h and ∇(∇2h) are computed by fitting local
quadratic surfaces with size 5 η × 5 η to the measured ∇h(x, t). At each Reynolds
number and depth below the surface correlations are averaged over 103 measured
frames. As figure 7(b) illustrates, these frames are nearly independent.

3.1. Vortex shedding

We shall first illustrate our methods by a measurement of the irregular shedding
of vortices off a vertical surface-piercing cylinder. For these experiments the grid
was removed from the water channel, and a cylinder with a diameter of 1.2 cm was
placed in the measurement section of channel instead; based on the cylinder diameter,
the Reynolds number was ReD = 1.9 × 103. The distance between the measurement
location and the cylinder was 40 cm, which is 33 times the cylinder diameter. At this
Reynolds number, the wake is turbulent but with vortices still clearly visible.

Figure 8 compares a snapshot of the field ξ (x) = (1/g)(u · ∇u) with ∇h(x). The
fields are drawn on the same scale, and as was anticipated in § 1.1, they bear a
striking resemblance to each other. This resemblance is quantified by the correlation
functions Cξ,∇h and C|ωz|,h shown in figure 9. While figure 9(a, b) show the planar
correlation functions assuming Taylor’s hypothesis for the surface gradient field, the
corresponding line correlations are shown in figure 9(c). We also show the strain
correlation CξS,∇h and its rotation companion CξΩ,∇h.
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Figure 9. Correlations in vortex shedding. Planar correlation functions (a) Cξ,∇h(r) and
(b) C|ωz |,h. The vertical (x) coordinate of the surface gradient field was reconstructed using

Taylor’s hypothesis. (c) Full lines: line correlation functions and Cl
|ωz |,h(y) (1), Cl

ξ,∇h(y) (2),

Cl
ξS,∇h(y) (3) and Cl

ξΩ,∇h(y) (4). The dashed lines are the corresponding planar correlation

functions at x = 0. The line correlations do not use Taylor’s hypothesis.

The line correlations Cl(y) shown in figure 9(c) are compared with a line at x = 0
from the correponding planar correlation functions. The latter filter structures which
travel with the mean velocity but do not significantly differ from Cl(y). Therefore,
all structures of the surface which correlate with those of the velocity field beneath
it are advected with the mean velocity. Indeed, the planar correlation functions in
figure 9(a, b) have a circular central peak. We also find that surface structures are not
associated uniquely with the rotational part of the subsurface velocity field; they are
equally correlated with the strain part ξ S of ξ = (1/g)(u · ∇)u.

The maximum of the correlation Cξ,∇h(0) = 0.5; it is not equal to 1, most likely
because the shed vortices are irregular and cause structures other than dimples above
vortex cores – structures not captured in our measured correlations. The value of the
correlation −C|ωz|,h(0) that we find can be compared well to those found by Dabiri
& Gharib (2001); Dabiri (2003; Cωz,h(0) = 0.2) for vortices in a vertical shear layer †;
and Tsai (1998; C|ωz|,|h|(0) = 0.5) in numerical simulations of turbulence generated by
a horizontal shear.

† Due to the experimental arrangment used, ωz < 0 in their experiments.
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Figure 10. Correlations between the surface shape and the velocity field in fully developed
turbulence. Planar correlation functions (a) Cξ,∇h(r) and (b) C|ωz |,h. The vertical (x) coordinate
of the surface gradient field was reconstructed using Taylor’s hypothesis. (c) Full line: line
correlation function Cl

ξ,ζ (y). (d) Full line: line correlation function Cl
|ωz |,h(y). (e) Full line: line

correlation function Cl
ξS,ζ (y). (f) Full line: line correlation function Cl

ξΩ,ζ (y). The dashed lines
in (c)–(f ) are the corresponding planar correlation functions at x =0. The line correlations do
not use Taylor’s hypothesis.

3.2. Fully developed turbulence

Figure 10 shows the correlation functions Cξ,ζ , CξS,ζ , CξΩ,ζ and C|ωz|,h for fully
developed turbulence generated by the active grid (Reλ = 157). As the surface is
more severely wrinkled, it is now important to allow for the surface tension terms
and correlate with the field ζ = ∇h − ((σ/ρ)∇)(∇2h) (1.3), not just with the surface
gradient ∇h. This is especially important at larger Reynolds numbers.

The maximum of the correlation functions at r =0 is now ‘one order of magnitude’
smaller than the maximum correlations found for vortex shedding in figure 9.
The planar correlations, with the x-coordinate reconstructed from time delays and
using Taylor’s hypothesis are shown in figure 10(a, b), while the corresponding line
correlations Cl

ξ,ζ , C
l
ξS ,ζ , C

l
ξΩ,ζ and Cl

|ωz|,h are shown in figure 10(c–f ). The planar

correlation filters structures that are convected frozen by the mean flow velocity.
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Figure 11. Dependence of the maximum correlations Cl
ξ,ζ (0) (closed dots) and Cξ,ζ (0, 0)

(open circles) on the depth below the surface for turbulence generated with the active grid
with Reλ = 173 (25opt in table 1). Inset: correlation function at z = − 0.016 m, the scales are
the same as those of figure 10(a).

Figure 10(a, c) illustrates that for Cξ,ζ and CξS,ζ this reduces the correlation compared
to the unfiltered ones, Cl

ξ,ζ and Cl
ξS,ζ . Indeed, due to the increased turbulence level,

structures no longer remain frozen.
We also find that strain rather than rotation events correlate most strongly with the

surface deformations. Clearly, the intuitive picture of surface dimples above vortex
cores needs to be reconsidered for fully developed turbulence. That the correlations
are so small is remarkable. We conclude that the surface gradient field now contains
a large random component that is uncorrelated with the velocity field. We find that
the maximum correlation Cl

ξ,ζ (0) does not depend strongly on the Reynolds number;

it ranges from Cl
ξ,ζ (0) = 0.09 at Reλ = 126 to Cl

ξ,ζ (0) = 0.07 at Reλ = 157.

Finally, figure 11 shows the dependence of the maximum correlation Cl
ξ,ζ (0) and

Cξ,ζ (0, 0) on the depth below the surface. Both line and planar correlations decay
with increase in depth. It appears that Cl and C only differ very close to the surface.
Although at the largest depth the correlation is no longer concentrated in a circular
blob such as that shown in figure 10, it remains small but non-zero at x =0. From
figure 11 we conclude a decay length of the correlation of approximately 0.02 m. This
length scale corresponds to the width of the layer in figures 3(d, e) and 6 in which the
influence of the free surface on the subsurface velocity field is felt.

4. Statistical properties of the surface crispations
The conclusion of the previous section is that the correlation between surface and

turbulence is greatly reduced due to random fluctuations of the surface. We will
now quantify those fluctuations precisely. We will view the line scans of the surface
gradient field as a space–time measurement ∇h(x, t) or ∇h(y, t), depending on how
the line is oriented on the surface, and no longer try to tile those lines to surfaces by
invocation of Taylor’s hypothesis.

The statistical properties of the surface are quantified by space–time correlation
functions and their companion wavenumber–frequency spectra. We approach the
correlation function through the cross-spectral density of the surface gradient, which
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for ∇x and the streamwise (ex) directionscan line reads

C̃xx(r
′ex, r

′′ex, ω) = 〈hx(r
′ex, ω) hx(r

′′ex, ω)〉; (4.1)

it reads similar for ∇y and the spanwise (ey) direction. Homogeneity implies that the
correlation function depends on r = r ′′ − r ′, which is nearly so in our experiments
(Savelsberg et al. 2006). The cross-spectral density can be computed quickly, after
which the normalized correlation function Cxx(rex; τ ) is only a Fourier transform
away.

From the possible combinations of the measured component of the surface
gradient and the direction of the scan line, the ‘longitudinal’ correlations are
Cxx(rex, τ ) and Cyy(rey, τ ), with the ‘transverse’ correlations Cxx(rey, τ ) and
Cyy(rex, τ ). For isotropic surface fluctuations, the longitudinal correlations are the
same, CL(r, τ ) = Cαα(reα; τ ), α = x, y, and similarly for the transverse ones CT (r, τ )
= Cαα(reβ; τ ), α 
= β = x, y. In our experiments the isotropy at τ 
= 0 is trivially broken
due to the mean flow velocity, and we will now consider the zero-time correlations
only. Using isotropy of the surface and the fact that the field ∇h is ‘potential’, it is
possible to derive a relation between longitudinal and transverse correlation functions,
with the remarkable result

CL(r) = CT (r) + r
d

dr
CT (r). (4.2)

A proof of (4.2) is given in the Appendix. It is interesting to compare (4.2)
to the corresponding isotropy relation for the two-dimensional ‘velocity’ field,
CT (r) = CL(r) + r d/drCL(r). (The corresponding relation for the three-dimensional
velocity field is (2.3).) The difference between the two equations, the interchange of
the L and T indices, arises because the velocity field is solenoidal (∇ · u = 0), while
the surface gradient field is potential (∇ × ∇h = 0).

First we will address the isotropy of the surface crispations. We recall that by a
judicious choice of the active grid protocol we can control the degree of anisotropy
of the subsurface turbulence. Furthermore, by either using an active or passive grid,
we can control the integral scale. Table 1 lists the turbulence properties, as well as
the surface slope fluctuations in the streamwise and spanwise directions. The ratio
between the streamwise and spanwise fluctuations is close to unity in all cases, except
for the lowest velocity.

Longitudinal and transverse correlations are shown in figure 12, both for isotropic
and anisotropic turbulences. Isotropic turbulence was stirred by the passive grid
and by the active grid operated with the isotropic protocol. A similar comparison
of correlation functions for the subsurface velocity fields for these three cases
is shown in figure 5. For the isotropic case, the longitudinal and transverse
correlations are independent of the direction, while figure 12(b) illustrates that
the isotropy relation (4.2) is satisfied. We also see that the surface isotropy is
slightly better for turbulence from the passive grid. With anisotropic turbulence, the
longitudinal correlation function of the surface depends on the direction, and also
the isotropy relation (4.2) is violated. Therefore, the surface crispations inherit their
(an)isotropy from the subsurface velocity field. Further, it appears that the correlation
length of the surface gradient fluctuations is proportional to the correlation length
of the velocity field. As a sidenote, this also shows that the surface crispations
are the result of the turbulence, rather than the active grid directly affecting the
surface.
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Figure 12. Longitudinal Cββ (reβ ) (L) and transverse Cαα(reβ ) (T ) correlation functions of
the surface gradient field. (a) Near-isotropic turbulence stirred by the passive grid (25stat in
table 1); full lines: β = x; dashed lines β = y. (b) Full line: longitudinal Cyy(rey) from (a);

dashed line: longitudinal CL computed from transverse Cxx(rey) from (a), using the isotropy
relation (4.2). (c) Near-isotropic turbulence stirred by the active grid (25opt in table 1); full
lines: β = x; dashed lines β = y. (d) Full line: Cyy(rey) from (c); dashed line: CL computed
from Cxx(rey) from (c), using the isotropy relation (4.2). (e) Anisotropic turbulence (25ran in

table 1); full lines: β = x; dashed lines β = y. (f) Full line: Cyy(rey) from (e); dashed line: CL

computed from Cxx(rey) from (e), using the isotropy relation (4.2).

While the space–time correlation functions are most sensitive to the large-
scale energy-carrying structures on the surface, their wavenumber and frequency
dependence is most clearly shown by the companion energy spectra:

Eαα(keβ, ω) =
〈
h̃α(keβ, ω) h̃∗

α(keβ, ω)
〉

,

where h̃α(keβ; ω) is the space–time Fourier transform of the gradient field hα(reβ, t).
Practically, the spectrum was computed not from the cross-spectral density but

from the average

Eαα(keβ, ω)=

〈∣∣∣∣∫∫
eikr+iωt hα(reβ, t) dr dt

∣∣∣∣2
〉

. (4.3)

For the determination of Eαα the data (107 lines, 1 h integration time) was pieced
in blocks of 4 × 103 lines (2.04 s) of 152 spatial points each. The Fourier transforms
in (4.3) were done over each block, and the spectral power was averaged over 400
blocks.
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Figure 13. Longitudinal spectra Exx(kex, ω) of the surface. (a), (c) Turbulence generated by the
active grid with U = 0.25m s−1 and Reλ = 172 (25opt in table 1). (b), (d) Active grid turbulence
with U = 0.15m s−1 and Reλ = 126 (15opt in table 1). (c), (d ) Corresponding shading plots
which also show the positive wavenumbers; the shading scale is logarithmic. Full lines: the
red and blue Doppler-shifted relations for capillary–gravity waves. Dashed lines: convection
by the mean flow, ω = − k U . (e) Full line 1: wavenumber spectrum Ex(kx) =

∫ ∞
0 Ex(kx, ω) dω,

at Reλ = 172; dashed line: fit Ex(k) ∝ k−6; full line 2: spectrum at Reλ = 126.

While the typical length scale of the turbulent surface depends most strongly on how
the turbulence is stirred, that is the integral length scale, the magnitude of the surface
gradient fluctuations depends most strongly on the turbulent Reynolds number.

In figure 13 we compare (k, ω) spectra at two Reynolds numbers. The three-
dimensional plots, which for clarity are only drawn for negative wavenumbers, show
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Figure 14. Space–time longitudinal correlation functions: (a), (c) Cxx(rex, τ ) and (b), (d )
Cyy(rey, τ ). (a), (b) Turbulence generated by the active grid (25opt in table 1). (c),
(d ) Turbulence generated by the static grid (25stat in table 1). Full lines indicate the
convection velocity of structures: (a) vst

f = 0.37m s−1; (b) v
sp
f =0.37m s−1; (c) vst

f = 0.33m s−1;

(d) v
sp
f =0.44m s−1.

a ridge at ω = −U k, corresponding to surface structures travelling with the mean flow
velocity U . These are the structures that we capture in the cross-correlations between
the surface shape and the subsurface turbulence. However, they are outweighed
by structures that approximately satisfy the Doppler-shifted dispersion relation of
capillary–gravity waves, ω = ωd(k) ± U k, with ωd(k) = (g k + σ k3/ρ)1/2. This is
illustrated in figure 13(c, d) which also shows the positive wavenumbers. For the
smallest mean velocity (U = 0.15m s−1) we now see the waves moving upstream.

Finally, figure 13(e) shows the corresponding wavenumber spectra Ex(kx) =∫ ∞
0

Ex(kx, ω) dω. The data suggest an algebraic behaviour E(k) ∼ k−6. Such a steep
decay is remarkable because we measure the spectrum of the surface gradient, which
is related to that of the surface elevation Eh(k) as Eh(k) = k−2 E(k). This implies that
the surface height spectrum is the extremely steep Eh(k) ∼ k−8.

It is interesting to compare the prediction of weak wave turbulence to our
results. Weak wave turbulence theory (Zakharov, L’Vov & Falkovich 1992) predicts
Kolmogorov-like spectra E(k) = CKkγ for weakly nonlinear surface waves, with an
exponent γ that is determined by how waves interact and a Kolmogorov constant CK

which can be computed exactly. For pure gravity waves the exponent of the surface
gradient spectrum would be γ = − 1/2, while for capillary waves γ = − 7/4. The
crossover between the gravity and capillary regime is at k = (gρ/σ )1/2 or k/2π ≈ 60 m−1.
Our measured exponent is much smaller than these predictions, and weak wave
turbulence cannot explain the surface wave spectra.

Figure 14 shows the companion space–time correlation functions. The capillary–
gravity waves show as ridges at U ± vst

f in the streamwise longitudinal correlations

Cxx(rex, τ ) and at ±v
sp
f in the spanwise Cyy(rey, τ ). Since the wave crests are
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perpendicular to the direction of propagation, these clear wave signatures are only
observed in the longitudinal correlations.

The observed phase velocities, vsta
f =0.37 ± 0.005 m s−1 for the turbulence generated

by the active grid and v
sts
f = 0.33 ± 0.005 m s−1 for the static grid, do not depend on the

Reynolds number. The phase velocity v
sta
f corresponds to a wavelength of capillary–

gravity waves λa = (8.4 ± 0.2) × 10−2 m s−1, while the velocity v
sts
f corresponds to

λs = (5.2 ± 0.2) × 10−2 m s−1. The ratio of these wavelengths λa/λs = 1.6 ± 0.1 can be
compared well to the ratio of the surface gradient length scales, Ls,a = 1.90 × 10−2 m,
Ls,s = 1.25 × 10−2 m, Ls,a/Ls,s = 1.52, where Ls has been defined as the first zero
crossing of the longitudinal correlation function Cyy(rey). In turn, this ratio of length
scales can be compared to the ratio of the corresponding integral length scales of the
subsurface turbulent velocity field, Ll,a/Ll,s =2. Clearly, the surface velocities increase
with increase in length scale, but probably because the manner of stirring is so different
for the two cases, the surface length scale is not exactly proportional to the turbulence
integral length scale. The values of the spanwise velocity v

sp
f are independent of the

Reynolds number for the static grid, v
sp
f = 0.44 ± 0.01 m s−1 but decrease slightly with

increase in the Reynolds number for the active grid, v
sp
f =0.37 m s−1 at Reλ = 173,

while v
sp
f = 0.44 m s−1 at Reλ = 126.

It is a remarkable feature of surface turbulence that these velocities can be
determined so accurately. In § 5 we will formulate a simple model that links these
velocities to the size of Gaussian dimples on the surface. The emergence of the
subsurface integral length scale at the surface is interesting as Komori, Nagaosa &
Murakami (1990) argue that heat and mass transfer at the surface mainly occurs at
this scale.

Let us now briefly return to the discussion about the applicability of Taylor’s
hypothesis in § 2.7. If it would apply to the moving surface, the correlation functions
of figure 14(a, c) would consist of a ridge at x = U t , with the mean velocity U . Clearly,
Taylor’s hypothesis only applies on the mean, with the surface structures travelling
at U ± vst

f .

5. A simple Huygens model of the turbulent surface
Our experiments show that the turbulent surface is made of capillary–gravity

waves that are radiated isotropically. From the subsurface turbulent velocity field
these waves inherit the integral scale, which determines their dominant wavelength
and the (an)isotropy. In this section we show that the correlation functions of
figure 14 can be explained by a simple model consisting of randomly distributed
surface depressions with a Gaussian profile that radiate capillary–gravity waves. As
(1.1) and (1.2) show, such Gaussian profiles are consistent with columnar vortices in
the subsurface velocity field with a Gaussian velocity distribution.

This model will help understand the kinematics of our experiments, which are
characterized by a measurement of the surface gradient along a line, while the surface
is advected by the mean velocity. Therefore, the surface waves will experience a
Doppler shift, depending on the relative location of their points of origin with respect
to the scan line. A caveat is that in our experiments the surface shape is not correlated
with vortical events only.

Let us assume sources at xi(t) which emit circular waves with spectrum F (k). They
contribute to the surface elevation at location x:

hi(ri, t) =

∫ ∞

0

k F (k) J0(kri) cos(ω(k)t) dk, (5.1)
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where ri = x−xi(t), J0 the Bessel function and ω(k) the dispersion relation of capillary–
gravity waves, ω(k) = gk + σk3/ρ. We further assume that these waves originate from
surface depressions h0(r) at t =0, with F (k), the Fourier–Bessel transform of the
initial profile,

F (k) =
1

4π

∫ ∞

0

r h0(r) J0(kr) dr. (5.2)

For the initial surface depression h0(r) we assume a Gaussian profile, h0(r) =
exp −r2/r2

0 , so that

F (k) =
1

8π
r2
0 e

−k2/k2
0 , (5.3)

with k0 = 2/r0. From (1.1) and (1.2) it follows that such a surface shape is consistent
with a Gaussian columnar vortex with radius 2r0. At the point x of observation, these
waves contribute to the surface elevation h(x, t),

h(x, t) =
∑

i

hi(ri, ti), (5.4)

where we choose for each source a random orgin of time, by setting cos(ω(k)t + φi),
with φi uniformly random on [0, 2π]. Finally, the gradient field contributions follow
from 5.1:

∇hi(ri, t) = − x
ri

∫ ∞

0

k2 F (k) J1(kri) cos(ω(k)t) dk. (5.5)

The sources are randomly sprinkled on the simulation domain and subsequently
advected by the mean flow, xi(t) = x0i +U ext . The random distribution of the sources
causes a random Doppler shift of the measured surface frequency. Figure 15(b) shows
that far away form a single source, the wave maxima of∫ ∞

0

cos(ω(k)t − kr)e−k2/k2
0 dk (5.6)

spread with a velocity vs which is approximately the phase velocity of waves with the
characteristic wavelength λ0 = 2π/k0 = πr0 of F (k).

For the case of many randomly sprinkled sources figure 15(a) shows the longitudinal
space–time correlation function Cxx(rex, τ ) of the streamwise arrangement with
U = 0.25 m s−1 and all sources having r0 = 0.045 m. The correlation function shows
both blue and red Doppler-shifted velocities, U ± vs , with the surface velocity
vs =0.67 m s−1. This is larger than the experimentally observed vs , which points to a
smaller r0.

For small r0, figure 15 illustrates that the surface velocity of the numerical simulation
approximately follows that of (5.6). It appears that for given σ, ρ, g, the only length-
scale in the model is r0; variation of the average source separation by the factor 2
did not affect vs .

Our simple kinematic model associates a surface velocity vs = 0.38m s−1 with a
length scale r0 = 0.021 m. This surface velocity is close to the one measured in
turbulence generated by the active grid. The radius of the corresponding columnar
vortices would then be 2r0. Although this is comparable to the integral scale of the
subsurface velocity field (L = 0.08 m), we realize that a model of Gaussian vortices
is too simple. Indeed, our model does not predict the occurrence of relative large
fequencies in the measured k, ω spectra. However, we believe that the model correctly
represents the kinematics of the experiments. Clearly, more work is needed to relate
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Figure 15. A simple model in which sources are randomly sprinkled on the surface which
radiate capillary–gravity waves from Gaussian initial depressions, h0(r) = − exp(−r2/r2

0 ), with

r0 = 0.045 m. The entire surface moves with the mean velocity U = 0.25m s−1. (a) Streamwise
longitudinal correlation function CL(r, τ ) of ∇xh; full lines: r = U ± vs τ , with vs = 0.67m s−1.
(b) Surface velocity vs as a function of the source radius r0. Dash–dotted line: numerical
simulation; full line: as predicted by (5.6); dashed line: phase velocity of capillary–gravity
waves ω(k)/k at λ= 2π/k = πr0.

the spectrum of the sources F (k) to the statistics of events in the subsurface velocity
field.

6. Conclusion
In this paper we have studied the interaction of well-defined turbulence inside a

flow with the fluctuations of its free surface. As anticipated by our estimates of the
Froude and Weber numbers in § 1, this interaction is relatively weak if expressed in
terms of the integral length scale L of the turbulence.

Now that we have measured the surface properties, we can use them to recompute
the Froude and Weber numbers in terms of the characteristic surface elevation and
curvature, namely Fr = (〈u2〉 + 〈v2〉)/2g〈h2〉1/2 and We = ρ(〈u2〉 + 〈v2〉)/4σ 〈h2

yy〉1/2,
where it should be noticed that, in view of the discussion in § 3, the measured
surface height fluctuations 〈h2〉1/2 are only approximate, while in view of the limited
applicability of Taylor’s hypothesis (§ 2.7), 2〈h2

yy〉1/2 is used to estimate 〈(∇2h)2〉1/2.
For near-isotropic turbulence with the highest Reλ reached in this experiment

(25opt in table 1) we find that Fr = 0.07 and We = 0.7, while for the case of vortex
shedding in § 3.1, Fr = 0.6 and We = 3. These numbers suggest that in the case of
fully developed turbulence, the turbulent energy mainly couples with capillary energy,
while the surface above irregular vortices shed by a surface-piercing cylinder (figures 8
and 9) is dominated by gravity, as is also evidenced by the large correlation observed
in figure 9.

For surface turbulence, Taylor’s hypothesis in which turbulent structures are
advected with the mean velocity U approximately applies at the large scales but
not at the small scales. The large-scale correlation functions of figures 9 and 10 are

approximately isotropic, but
〈
h2

xx

〉1/2
deduced using Taylor’s hypothesis,

〈
h2

xx

〉1/2
=〈

h2
xt/U 2

〉1/2
, is approximately three times larger than

〈
h2

yy

〉1/2
, although the surface is

near-isotropic.
The emergence of capillary–gravity waves in our experiments is surprising because

the subsurface turbulence velocity fluctuations are an order of magnitude smaller
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than the minimum phase velocity of capillary–gravity waves (vf ≈ 0.23 m s−1), and
a profound question concerns the excitation mechanism of these waves. In order
to understand the kinematical aspects of these waves, we have proposed a simple
model in § 5. Although it accounts for the velocity of the waves given the size of the
subsurface structures, it is only the first step. We believe that the model should be
amendable to analytic treatment. Thus, it should lead to the solution of the inverse
problem: given the statistics of the surface crispations, what are the elementary
excitations of the surface by the turbulence beneath it?

Clearly, the challenge for future experiments will be to create stronger turbulence,
possibly with turbulent velocities that approach the minimum velocity of capillary–
gravity waves. This cannot be done in the grid-generated channel flow in this paper,
as reaching those velocities would require an increase in the pumping power of three
orders of magnitude. An interesting variant of an active grid to create free surface
turbulence with zero mean flow was recently proposed by Variano, Bodenschatz &
Cowen (2004). However, a matter of concern is the homogeneity and isotropy of the
generated turbulence.

This work is part of the research programme of the Stichting voor Fundamenteel
Onderzoek der Materie (FOM), which is financially supported by the Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO). We thank Ad Holten for
constructing the surface scanner and GertJan van Heijst for his encouragement, and
we are greatly indebted to Anders Andersen, Bernard Geurts and Carl Tipton for
many helpful discussions.

Appendix. Isotropy relation for a surface
A consequence of the fact that hx and hy are the gradient of scalar field h(x, y) is

that they form a potential field:

∇ × (∇h) =
∂

∂x
hy − ∂

∂y
hx = 0. (A 1)

We can use this to derive the relation between the transverse and longitudinal
correlation functions for the surface slopes, via the surface slope covariance tensor,
defined by

R(r) =

(
Rxx(r) Rxy(r)

Ryx(r) Ryy(r)

)
=

(〈hx(x)hx(x + r)〉 〈hx(x)hy(x + r)〉
〈hy(x)hx(x + r)〉 〈hy(x)hy(x + r)〉

)
. (A 2)

Using (A 1) we find that

∂

∂rx

Rxy(r) − ∂

∂ry

Rxx(r) = 0, (A 3)

and similarly

∂

∂ry

Ryx(r) − ∂

∂rx

Ryy(r) = 0. (A 4)

In any isotropic field, we can write the covariance tensor as a combination of rirj

and δij , which defines the (scalar) longitudinal covariance function RL(r) and the
transverse covariance function RT (r) (Pope 2000)

Rij (r) = (RL(r) − RT (r))
rirj

r2
+ RT (r)δij ,
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so that

Rxx(r) = (RL(r) − RT (r))
r2
x

r2
+ RT (r) and Rxy(r) = (RL(r) − RT (r))

rxry

r2
.

Either (A 3) or (A 4) can now be used to find the relation between RL(r) and RT (r).
We start by calculating explicitly the derivatives:

∂Rxy

∂rx

=

(
dRL

dr
− dRT

dr

)
r2
x ry

r3
+ (RL − RT )

ry

r2

(
1 − 2r2

x

r2

)
∂Rxx

∂ry

=

(
dRL

dr
− dRT

dr

)
r2
x ry

r3
− (RL − RT )

2ryr
2
x

r4
+

dRT

dr

ry

r
.

Substitution of these expressions in (A 3) leads to the relation between the transversal
and longitudinal covariance functions,

RL = RT + r
d

dr
RT ,

and since the r.m.s. of the slope is independent of the direction the desired relation
between the longitudinal and transverse correlation function becomes

CL = CT + r
d

dr
CT .

Performing similar substitutions in (A 4) obviously leads to the same result.
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